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1 Introduction

This document describes a definition of the ANSI/IEEE-854 [3] Standard for Radix-Independent

Floating-Point Arithmetic in the PVS verification system (developed at SRI International) [4].

IEEE-854 is a generalization of the ANSI/IEEE-754 [2] Standard for Binary Floating-Point Arith-
metic. Therefore, this formalization of the IEEE-854 can be instantiated to serve as a basis for the

formal specification of the more widely used IEEE-754 standard. All that is required is to instan-

tiate the general theory with the appropriate constants, and define the representation formats in
accordance with IEEE-754.

This is not the first formalization of an IEEE standard for floating-point arithmetic. Geoff

Barrett [1] describes the Z formalization of IEEE-754 used in the development of the INMOS

T800 Transputer. Z is a formal specification language with limited mechanized support. The

specification presented here uses the PVS specification language which is tightly integrated with

the PVS mechanized proof system. Also, the specification presented here is of IEEE-854, not

IEEE-754. This formalization in PVS was not based upon the Z specification.

This document will present those portions of the standard that have been defined in PVS. The

various features of PVS will be described at the time of their first use. This report highlights some

areas of imprecision in the standard and illustrates that formal techniques are sufficiently advanced

to consider their use in the development of future standards.

2 Basic Definitions

The document IEEE-854 (hereafter referred to as the standard) describes a parameterized standard

for floating-point arithmetic. This section will present the definition of floating-point numbers and

introduce mappings between floating-point and real numbers. The standard allows the definition

of four precisions of floating-point numbers: single, single extended, double and double extended.

Each precision is distinguished by the range of representable values and the number of significant

digits. The PVS theories define a fixed, but undetermined precision. It is simple to define any

combination of precisions by importing multiple instances of the top-level PVS theory presented
here.

2.1 Sets of Values

Section 3.1 of the standard defines the parameters:

Four integer parameters specify each precision:

b = the radix

p = the number of base-b digits in the significand

Ema:_ = the maximum exponent

Emi,_ = the minimum exponent

The parameters are subject to the following constraints:

1. b shall be either 2 or 10 and shall be the same for all supported precisions

2. (Emaz - Emi,_)/p shall exceed 5 and should exceed 10

3. bp-1 ) 105



The balance between the overflow threshold (b Ema=+l ) and the underflow threshold (b E'"'_ )

is characterized by their product (bE'ax+E_'+l), which should be the smallest integral

power of b that is >_ 4. [3, page 8]

From these constraints, it is clear that b > 1, p > 1, and that Emax > Emin. However, the last

quoted sentence on balance between the overflow and underflow thresholds is only a suggestion 1

and need not be followed for an implementation to be compliant. In later sections, we will highlight

some consequences of not having a balanced exponent range.

In PVS, these constraints can be defined as follows:

IEEE_SB4 [b,p:above(1),E_max,E_min:integer]: THEORY

BEGIN

ASSUMING

Base_values: ASSUMPTION b=2 or b=lO

Exponent_range: ASSUMPTION (E_max - E_min)/p > I0

SiEnificand_size: ASSUMPTION b'(p-1)>=10"5

E_balance: ASSUMPTION

IF b < 4 THEN E_max + E_min = 1 ELSE E_max + E_min = 0 ENDIF

ENDASSUMING

Exponent_balance: LEMMA b'(E_max+E_min) <4 & 4<=b'(E_max+E_min+l)

E_max_gt_E_min: LEMMA E_max > E_min

E_min_neg: LEMMA E_min<O

E_max_pos: LEMMA E_max>O

IMPORTING IEEE_854_defs [b ,p ,E_max ,E_min]

END IEEE_854

This theory definition has four formal parameters, which correspond to the requirements of the

standard. For a fixed n, the type above(n) is defined in the PVS prelude as {i : natli > n}, thus

by declaring b and p to be of type above(i), we have b > 1 and p > 1. The PVS ASSUMING section

states the additional constraints on these parameters. These assumptions define proof obligations

for any theory that imports IEEE_SS4. This specification includes the optional constraints given by

the standard. A minimally compliant specification would modify assumption Exponent_.range and

remove both assumption E_balance and lemmas Exponent_balance, E.min_neg, and gunax_pos.

The last line of the PVS theory imports the remaining definitionsand declarations to complete

the specificationof floating-pointarithmetic for a fixed precision (e.g.one of single,double, single

extended, or double extended).

None of the underlying definitionsdepend directly on the assumptions given in the assuming

section,so the theories defining the rest of the standard willuse the weaker assumptions that b > 1,

p > i, and that Emax > Emin. We will not assume that E,na_ >_ 0 or that Emln _<0, since these

_The distinctionisbetween shouldand shall.Usage ofthe word shouldindicatesa suggestionas opposed to a
requirement.
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are not consequences of the required constraints. This will have a limited impact on the remaining

definitions.

Section 3.1 of the standard continues:

Each precision allows for the representation of just the following entities:

1. Numbers of the form (-1)sbE(do.dld2 ... dp-1) where

s = an algebraic sign

E = any integer between Emin and Emax, inclusive

di = a base-b digit (0 < di <_ b- 1)

2. Two infinities, +_ and -_

3. At least one signaling NaN

4. At least one quiet NaN [3, page 8]

Item 1 has a slight ambiguity concerning the definition of s. If s is defined as an algebraic sign

(e.g. one of {+,-}), then the expression (-1) s has no meaning. The PVS specification adopts the

definition from IEEE-754 [2], that is, s E {0, 1}. This is the most natural choice for s, but several

other numeric encodings possess the necessary properties. For example, s could be a base-b digit

where an even value denotes positive and an odd value denotes negative.

The PVS specification of values defines a floating-point number (fp_num) using the PVS abstract

datatype mechanism [5]2:

IEEE_854_valuss

[b,p:abovs(1),

E_max:integer,

E_min:{i:integer l E_max > i}]: THEORY

BEGIN

sign_rep: type = {n:nat I n = 0 or n = I}

Exponent: type = {i:int I E_min <= i _ i <= E_max}

digits: type = [below(p)->below(b)]

NaN_type: type = {signal, quiet}

NaN_data: NONEMPTY_TYPE

fp_num: datatype

begin

f init e(sign: sign_rep, Exp :Exponent, d:digit s) :finit e?

infinite (i_sign :sign_rep) : infinite?

NaN(status:NaN_type, data:NaN_data): NaN?

end fp_num

2This theoryhas no assuming section,but thereisan explicitassumption in the formal parameters. Ern,nis

defined via the dependent type mechanism to be strictly less than Emax. By capturing this information in the type

of Era,,, the corresponding importing tccs are trivially satisfied (and hence, not generated). If we used an assuming
clause, there would be an explicit proof obhgation at each level of the importing hierarchy.
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The definition of datatype fp..num states that the type of floating-point numbers is the disjoint

union of three sets: finite numbers, infinite numbers, and Not a Numbers (NaNs). A finite number

can be constructed (using constructor finite) from an algebraic sign, an integer exponent, and a

significand3; an infinity can be constructed from an algebraic sign; and a NaN can be constructed

from a status flag (i.e. signal or quiet) and data undetermined by the standard.

2.2 Mapping floating-point numbers to reals

The standard implies an intended semantics for the representable numeric values. The function

value maps the finite floating point numbers to the reals as implicitly specified in the standard. In

PVS, reals are treated as a base type. There is no need to import a library of definitions for real
arithmetic.

fin : vat (finite?)

value_digit(d:digits)(n:nat):nonneg_real =

if n < p then d(n) * b " (-n) else 0 endif

value(fin) : real =

(-1) " sign(fin) * b " Exp(fin) * Sum(p, value_digit(d(fin)))

Here, fin is declared to be a variable of type (finite?), that is, an element of the subtype of

fp_num that satisfies the predicate finite? 4. Function value_digit takes a collection of digits s

and an index for a particular digit and returns the usual base-b interpretation of a digit determined

by its position in the significand. Finally, value defines the interpretation of the sign field, the

exponent, and sums the values of the digits in the significand. Function Sum is defined in a separate
PVS theory.

The standard recognizes that this scheme encodes some values redundantly. Furthermore,

an implementation may use redundant encodings, so long as it does not distinguish redundant

encodings of nonzero numbers. The standard subdivides the encodings into three groups using the
following definitions:

normal number A nonzero number that is finite and not subnormal.

subnormal number A nonzero floating-point number whose exponent is the preci-

sion's minimum and whose leading significant digit is zero. [3, Section 2, page
8]

These definitions divide the finite numbers into three groups: those that denote zero (i.e. any finite
fp_num with a significand of all zeros), the subnormal numbers, and the normal numbers. The

definitions given above are imprecise. Consider the following finite number:

(-1) ° × bEm"_+l X 0.01 " "0 (= b Emin-1)

3The significand consists of an indexed collection of p base-b digits. The most natural way to define this in PVS

is by function type [below(p) ---* below(b)]. The PVS prelude defines below(n) : TYPE --'-- {i : natli < n}.

4The predicate finite? is determined by the fp..mm datatype declaration.

5The PVS specification language is an extended version of higher-order logic. Functions are first-class objects and

can be passed as parameters or be defined as the return type of other functions.



This is clearly nonzero. Since the exponent is not the precision's minimum, a strict interpretation of

the definition of subnormal may lead us to conclude that this must be a normal number. However,

bE""-I = (-1) 0 × bE'_'" × 0.1...00

thus it is equal to a subnormal number so it must also be subnormal. Before we can make the

distinctions precise, we need to determine a canonical encoding for each finite floating-point number.

The function normalize maps each finite fp..num to a canonical representative:

shift_left(d: digits): digits =

LAMBDA (i: below(p)): IF (i + 1 = p) THEN 0 ELSE d(i + I) ENDIF

normalize(fin:(finite?)): recursive (finite?) =

IF Exp(fin) = E_min or d(fin)(O) /= 0 then

fin

ELSE

normalize(finite(sign(fin),Exp(fin)-l,shift_left(d(fin))))

ENDIF

measure lambda (fin:(finite?)): Exp(fin) - E_min

Recursive 6 function normalize repeatedly shi_s the significandle_ one digit and decrements the

exponent until either the exponent is the precision'sminimum or the most significantdigit is

nonzero. Since our goal in defining function normalize isto map each finitenumber to a canonical

representative,we must prove that the resultof this function preserves the value of its argument.

The following lemma has been proven in PVS:

normal_value: LEMMA

value(fin) = value(normalize(fin))

We can now make the distinctions between finite numbers precise. We do this by defining three

predicates: zero?, normal?, and subnormal?.

zero?(fp:fp_num):bool =

IF finite?(fp) THEN value(fp)=0 ELSE FALSE ENDIF

normal?(fp: fp_num): bool =

IF finite?(fp) THEN d(normalize(fp))(O) > 0 ELSE FALSE ENDIF

subnormal?(fp: fp_num): bool =

IF finite?(fp) THEN not zero?(fp)

Exp(normalize(fp)) = E_min &

d(normalize(fp))(O) = 0

ELSE FALSE

ENDIF

We can provably partition the finite numbers into three sets:

6PVS requires that all functions be total, so any definition by recursion involves a proof that the recursion

terminates. The evidence needed for this proof is given by a measure function that must decrease in each recursive
call according to a well-founded relation. The default well-founded relation is '<' defined on the natural numbers.



finite_cover: LEMMA zero?(fin) OR normal? (fin) OR subnormal? (fin)

finite_disjoint1: LEMMA N0T (zero?(fin) _ normal?(fin))

finite_disjoint2: LEMMA NOT (zero?(fin) a subnormal?(fin))

finite_disjoint3: LEMMA NOT (normal?(fin) & subnormal?(fin))

Lemma finite_cover states that every finite floating-point number either zero, normal, or sub-

normal. The remaining lemmas assert that these sets are mutually disjoint.

There are several simple lemmas that can be proven about value. We introduce the following

definitions for the maximum and minimum representable values within a precision:

max_si&rnificand:digits =

(lambda (i:below(p)): b-l)

min_significand: digits =

(lambda (i: below(p)): IF i < p - 1 THEN 0 ELSE 1ENDIF)

d_zero: digits = lambda (i: below(p)): 0

pos : sign_rep = 0

neg : sign_rep = 1

max_fp_pos

min_fp_pos

pos_zero

: fp_num = finite(pos,E_max,max_siEnificand )

: fp_num = finite(pos,E_min,min_siEnificand )

: fp_num = finite(pos,E_min,d_zero)

With these definitions we can prove in PVS that the function value returns the correct value for

these floating-point numbers.

max_fp_correct: LEMMA

value(max_fp_pos) = b ^ (E_max + I) - b " (E_max - (p - I))

min_fp_correct: LEMMA

value(min_fp_pos) = b A (E_min - (p - I))

value_of_zero: LEMMA

value(pos_zero) = 0

Function value only specifies part of the relationship between reals and floating-point numbers.

It serves to interpret finite floating-point numbers as reals. The next section addresses mapping

reals to floating-point numbers.

2.3 Mapping reals to floating-point numbers

To map reals to floating-point, we define the following functions:

siEn_of(r:real): sign_rep = IF r < 0 THEN neg ELSE pos ENDIF

Exp_of(px:posreal): {i:intl bAi <= px & pX < b'(i+l)}

truncate(E:integer,nnx:nonneg_real): digits =

(lambda (i:below(p)): mod(floor(nnx/(b-(E-i))),b)
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Function sign_of returns the algebraic sign of a real number, adopting the convention that the

sign of 0 is positive. Function Exp_of is completely defined using the dependent type and predicate

subtype features of PVS. The range type of Exp_of depends on its argument px, and is constrained

to be an integer that satisfies the given predicate. PVS generates a type-correctness condition

(TCC) for this definition. 7 The TCC is discharged by showing that for all positive reals px there

is an integer that satisfies the predicate. Function truncate uses the mod and floor functions to

determine each digit in the significand for a given exponent E. These three functions allow us to

define the following conversion from real numbers to floating-point numbers:

real_to_fp(r) : fp_num =

IF abs(r) >= b'(E_max+l) THEN

infinite (sign_of (r))

ELSIF abs(r) < b'E_min THEN

fini%e(sign:of(r), E_min, %runca%e(E_min, abs (r)))
ELSE

fini%e (sign_of (r), Exp_of (abs(r)), %runca%e (Exp_of (abs(r)), abs (r)))

ENDIF

Function rsal_to_fp converts an arbitrary real into a floating-point representation. If the real is

outside the range of representable values, an appropriately signed infinity is returned. If the real

is too small to be represented, it gets mapped to an appropriately signed zero. This definition

provides an approximation of reals by rounding toward zero. However, the standard calls for four

different rounding modes. The next section describes the various rounding mode and shows how

this definition may be used in a general conversion from reals to floating-point.

3 Rounding

Floating-point numbers serve as a computable approximation of real numbers. The standard speci-

fies four means of approximating reals by floating-point numbers. The user has the ability to select

the rounding mode from among these four. In Section 4, the standard states:

... every operation specified in section 5 shall be performed as if it first produced an

intermediate result correct to infinite precision and with unbounded range, and then

that result rounded according to one of the modes in this section. [3, page 9]

The operations in section 5 referenced by this clause consist of the basic arithmetic operations:

add, subtract, multiply, divide; remainder and square root; comparisons; conversions between

precisions; and conversions to integers and integer valued floats. The discussion of rounding modes

will be done in conjunction with the specification of the operations given in section 5 of the standard.
The default mode is round to nearest. The standard states:

An implementation of this standard shall provide round to nearest as the default round-

ing mode. In this mode the representable value nearest to the infinitely precise result

shall be delivered; if the two nearest representable values are equally near, the one with

its least significant digit even shall be delivered. [3, Section 4.1, page 9]

In addition, the standard continues:

7A TCC is a proof obligation generated by PVS that is sufficient to show that a given term is well typed. PVS

has an undecidable type system, so sometimes the user must provide a proof that a term is correctly typed.
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An implementation of this standard shall also provide three usev-selectable directed

rounding modes: round towards +_, round towards -_, and round towards O. [3,

Section 4.2, page 9]

These rounding modes will first be defined for conversion of reals to integers.

3.1 Floating-point to integer

The simplest rounding operation to consider is converting a floating-point number to an integer (or

to an integral valued floating-point number). From Section 2.1, we defined function value to map

a floating-point number to a real. All that remains is to convert this real to an integer. Section 5.4
of the standard states:

Conversion to integer shall be effected by rounding as specified in Section 4. [3, page

10]

Section 5.5 adds:

It shall be possible to round a floating-point number to an integral valued floating-point

number in the same precision. [3, page 10]

The four rounding modes are specified as an enumerated type in PVS, leading to the following
definition of function round:

sgn(r:real): int ffiIF r >ffi0 THEN I ELSE -1ENDIF

round(r :real,mode :rounding_mode) : integer =

CASES mode of

to_nearesz : round_to_even(r),

to_zero: sEn(r) * floor(abs(r)),

to_pos : ceiling(r),

to_ne E : floor (r)

ENDCASES

This definitionmakes use of the floor,ceiling,and absolute value functions to define the directed

roundings. Round to nearest requires an additional function definition.

round_to_even(r :real) : integer =

IF r - floor(r) < ceiling(r) - r THEN floor(r)

ELSIF ceiling(r) - r < r - floor(r) THEN ceiling(r)

ELSIF floor(r) = ceiling(r) THEN floor(r)

ELSE 2 * floor(ceiling(r) / 2)

ENDIF

Function round_to_even rounds an arbitrary real to the nearest integer. The typical cases are

defined using the integer floor and ceiling functions. The difficult case is the fourth alternative

where the fractional part of r is 1/2. The expression

will round any real number r to the nearest even integer.

To demonstrate the correctness of these definitions, the following lemmas have been proven in
PVS:



round_to_event: LEMMA

abs(r - round_to_even(r)) <= I / 2

round_to_even2: LEMMA

abs(r - round_to_even(r)) = 1 / 2

=> in%eger_pred(round_to_even(r) / 2)

round1: LEMMA abs(r- round(r,mode)) < 1

Two of these lemmas illustratethe correctness of the definitionof round_to_even. The firststates

that round_to_even(z) has an approximation error of at most I/2. The second states that when

itis in error by exactly i/2, round_to_even returns an even integer. In addition, Lemma roundl

illustratesthe correctness of round. The approximation error is always less than i.

We can use round to define a function mapping a finitefloating-point to an integer (and to an

integral valued floating-point number):

fp_to_int (fin,mode) : inl;eger = round(value(fin) ,mode)

fp_to_int_fp(fin,mode): fp_num =

real_to_fp(round(value(fin),mode))

Ideally, function fp_to_int.Ip should return an object of type (finite?). However, since there

are no constraints to ensure that Emax >_ P, it is not possible to prove the resulting TCC. s

3.2 Rounding reals

The function round can be used in conjunction with real_to_fp to define a general rounding

function in accordance with the standard. It is necessary to first scale a nonzero real so that

its scaled value is between bp-1 and bp. Function round can be used to adjust the scaled value

accordingly, and the result can be scaled back to its original magnitude. The resulting real will

have at most p significant base-b digits, so real_to_:fp can be used to map it into an appropriate

floating-point representation. The standard describes a number of different possible return values

if r is outside the range of normal floating-point numbers. It is not practical to introduce all the

possible scenarios here. The exceptional cases will be presented in a later section of this paper.

scale(px):{i:intlb-(i+p-l)<=px & px < b'(i+p)} = Exp_of(px)-(p-l)

scale_correct: lemma b^(p-l)<=px/b'scale(px) & px/b^scale(px)< b'p

over_under?(r): bool = (r/=0 & (abs(r)>max_pos or abs(r)<b'E_min))

round_scaled(r:nzreal,mode:rounding_mode): real =

b'(scale(abs(r)))*round(b^(-scale(abs(r)))*r,mode)

fp_round(r, mode): real =

8If Emax < 0, then the maximum representable floating-point number may round to 1. Function real_to_:fp maps

1 to +oo in this case. More generally, if E,naz < p, a floating-point converted to an integer using the rounding modes
may map back to co. From this observation, one may conclude that a reasonable instance of this standard should
adhere to the suggested constraint on a balanced exponent range.



IF r = 0 THEN 0

ELSIF over_under?(r) then

round_exceptions(r,mode)

ELSE round_scaled(r,mode)

ENDIF

Function scale has a type defined in the same manner as Exp_of (Section 2.3), however, it also

has a body explicitly defining the function. Function fp_round performs the necessary scaling to

appropriately round an arbitrary real. The following lemmas show that these definitions have the

desired properties:

round_O: LEMMA fp_round(O, mode) = 0

round_error: LEMMA

r /= 0 _ NOT over_under?(r)

=> abs(r - fp_round(r, mode))

< b " (Exp_of(abs(r)) - (p - _))

round_near: LEMMA

r /= 0 _ NOT over_under?(r)

=> abs(r - fp_round(r, to_nearest))

<= b " (Exp_of(abs(r)) - (p - I)) / 2

round_pos: LEMMA

N0T over_under?(r) => fp_round(r, to_pos) >= r

round_neg: LEMMA

N0T over_under?(r) => fp_round(r, to_neg) <= r

round_zero: LEMMA

NOT over_under?(r)

=> abs(fp_round(r, to_zero)) <= abs(r)

Lemma round_0 shows that rounding 0 returns 0 regardless of the rounding mode. Lemma

round_error shows that the approximation error is less than one "least significant digit". Lemma

round.near states that the approximation error for mode to_nearest is _< one-half the least sig-

nificant digit. Lemmas round_pos, round_neg, and round_zero show that fp_round rounds in the

proper direction for these modes.

4 Operations

Section 5 of the standard states:

All conforming implementations of this standard shall provide operations to add, sub-

tract, multiply, divide, extract the square root, find the remainder, ...

• .., each of the operations shall be performed as if it first produced an intermediate result

correct to infinite precision and with unbounded range, and then coerced this intermediate

result to fit in the destination's precision. [3, page 10]
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Basedon this description,the PVSdescriptionwill definethe operationsusingthe corresponding
realarithmeticfunctions.

4.1 Arithmetic definitions

The PVS definitions of the four basic arithmetic operations are similar. The enumerated type

fp_ops : type = {add, sub, mult, div}

simplifies the definition of these functions. The basic definition for an arithmetic operation is

illustrated by the following definition for fp_add; the definitions for fp_sub and fp_mult are nearly

identical.

fp_add(fpl, fp2, mode): fp_num =

IF finite?(fpl) _ finite?(fp2) THEN fp_op(add, fpl, fp2, mode)

ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan(add, fpl, fp2)

ELSE fp_add_inf (fpl, fp2)

ENDIF

The function definition invokes one of three functions depending on the arguments. If both argu-

ments are finite, then this function invokes the corresponding real function applied to the values

of the arguments. If one argument is a NaN, then the rules for operations on NaNs are invoked.

When one of the arguments is infinite, the result required by the standard is returned. Each of

these cases will be described in more detail in the following sections.

The definition of division is a little more complicated, in that division by zero requires special

treatment:

fp_div(fpl, fp2, mode) : fp_num =

IF fini_e?(fpl) & finiZe?(fp2)

THEN IF zero?(fp2)

THEN IF zero?(fpl)

THEN invalid _.raise invalid

ELSE infinite(mult_sign(fpl, fp2)) _.raise divide_by_zero

ENDIF

ELSE fp_op(div, fpl, fp2, mode)

ENDIF

ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan(div, fpl, fp2)

ELSE fp_div_inf(fpl, fp2)

ENDIF

Ifthe second argument iszero and the firstisnot, then the function returns an appropriately signed

infinity (and will later be modified to raise the divide by zero exception). If both operands are zero,

the invalid exception is raised (here denoted by an arbitrary NaN named invalid). Otherwise,

division reduces to the same basic format as the other operators.

4.1.1 Arithmetic with finite operands

When both operands are finite, the formal specification of floating-point arithmetic consists of

converting the finite floating-point numbers to real numbers, performing the appropriate arithmetic

function, and then converting the resulting real number back to floating-point format. The following

PV$ text accomplishes this:

11



apply(op,finl,(fin2:finl div?(op) => not zero?(fin))): real =

cases op of

add: value(finl) + value(fin2),

sub: value(fin1) - value(fin2),

mult: value(fin1) * value(fin2),

div: value(finl) / value(fin2)

endcases

fp_op(op, finl, (fin2: fin I div?(op) => NOT zero?(fin)), model: fp_num =

LET r - fp_round(apply(op, fin1, fin2), model

IN IF r = 0 THEN signed_zero(op, finl, fin2, mode)

ELSE real_to_fp(r)

ENDIF

Function fp_op does the appropriate conversions and calls function apply to perform the appro-

priate arithmetic operation. If the rounded result is zero, function signed_zero (Section 4.1.4) is

invoked to return a correctly signed zero. Otherwise, rea!_to.2p converts the result to a floating-

point number. Function apply uses the dependent type and predicate subtype mechanisms of

PVS to restrict the domain of its third argument to nonzero numbers when the operation is div.

Without this type restriction, it would not be possible to justify the use of '/' in the definition of

apply.

4.1.2 Arithmetic on Infinities

The standard defines well behaved operations involving infinite arguments. It states:

Infinity arithmetic shall be construed as the limiting case of real arithmetic with operands

of arbitrarily large magnitude, when such a limit exists. Infinities shall be interpreted

in the affine sense, that is, -oo < (every finite number) < +oo. [3, Section 6.1]

This requires special treatment for each arithmetic operator, the example given here is for floating-

point addition.

fp_add_inf(numl, (num2: num I infinite?(numl) OR infinite?(num))): fp_num

IF infini_e?(numl) 8: infinite?(num2) THEN

IF (i_sign(numl) = i_sign(num2)) THEN numl

ELSE invalid

ENDIF

ELSIF infinite?(numl) THEN numl

ELSE num2

ENDIF

Function fp_add_inf takes two numeric arguments (i.e. either finite or infinite, but not NAN),

one of which must be an infinity. If only one argument is an infinity, that argument is the return

value. If both are infinite and have the same sign, then either argument is the correct return value.

However, if the two infinite arguments have different signs, the invalid exception must be signaled.

In the definition here, fp_add_inf returns a NaN value invalid. This will serve as a placeholder

until the PVS specification is revised to properly deal with exceptions. Infinity arithmetic for the

other operators is defined similarly.
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4.1.3 Arithmetic on NaNs

The standard does not specify interpretation of NaNs, however, it does constrain the behavior

of operations given NaN arguments. The main motivation for these constraints is to enable use

of NaNs either for diagnostic information, or for implementation dependent enhancements to the

operations.

Section 6.2 of the standard states:

Every operation involving a signaling NaN or invalid operation (7.1) shall, if no trap

occurs and if a floating-point result is to be delivered, deliver a quiet NaN as its result.

Every operation involving one or two input ]VaNs, none of them signaling, shall signal

no exception, but, if a floating-point result is to be delivered, shall deliver as its result a

quiet NaN, which should be one of the input ]VaNs. [3]

The following PVS specification captures the various cases for dealing with NaN arguments. Func-

tion fp_quie_ is constrained via the PVS dependent type mechanism to return one of its arguments.

Function fp_signal tests to see if the invalid trap is enabled; if not, a quiet NaN is returned.

fp_quiet(op,fpl,(fp2l NaN?(fpl) OR NaN?(fp2))): {nanl nan=fpl or nan=fp2)

fp_signal(op, fpl,(fp21NaN?(fpl) OR NaN?(fp2))): fp_num =

IF trap_enabled?(invalid_operation) THEN invalid

ELSE fp_quiet(op, mk_quiet(fpl), mk_quiet(fp2))

ENDIF

fp_nan(op, fpl, (fp21NaN?(fpl) OR NaN?(fp2))): fp_num =

IF signal?(fpl) OR signal?(fp2) THEN fp_signal(op, fpl, fp2)

ELSE fp_quiet(op, fpl, fp2)

ENDIF

4.1.4 The Algebraic Sign

The standard specifies a set of rules for the algebraic sign of an arithmetic result. There are

two scenarios where special care is required to get the algebraic sign correct: arithmetic involving

infinities (including division by zero), and arithmetic operations that deliver a result of zero. The

cases involving infinities have been addressed above. When an arithmetic function evaluates to

zero, we need to determine whether to return +0 or -0. For multiplication and division, the sign is

"+" if and only if both arguments have the same sign. For addition and subtraction, the standard
states:

When the sum of two operands with opposite signs (or the difference of two operands

with like signs) is exactly zero, the sign of that sum (or difference) shall be '%" in

all rounding modes except round toward -oc, in which mode that sign shall be "-."

However, x + x = x - (-x) retains the same sign as x even when x is zero. [3, page 13]

The above definition of fp_op invokes signed_zero for all zero results. This function does the case

analysis required to return a correctly signed floating-point zero.

signed_zero(op, finl, fin2, mode): {fin I zero?(fin)} =

CASES op OF
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add:

sub:

IF zero?(finl)

zero?(fin2) & sign(finl) = sign(fin2) THEN finl

ELSIF to_neg?(mode) THEN neE_zero

ELSE pos_zero

ENDIF,

IF zero?(finl)

zero?(fin2) _ siam(fin1) /= sign(fin2) THEN finl

ELSIF to_neg?(mode) THEN neE_zero

ELSE pos_zero

ENDIF,

mul'c:

IF sign(finl) = sign(fin2) THEN pos_zero

ELSE neE_zero

ENDIF,

div:

IF sign(fin1) = sign(fin2) THEN pos_zero

ELSE neE_zero

ENDIF

ENDCASES

4.2 Remainder

Section 5.1 of the standard defines the remainder function as follows:

When y ¢ O, the remainder r = z REM y is defined regardless of the rounding mode by

the mathematical relation r = x - y • n, where n is the integer nearest the exact value

of x/y; whenever In - x/y I = 1/2, then n is even .... If r = O, its sign shall be that of
x. [3]

The function round_'co_even, defined in section 3.1, gives us the necessary means to compute n

from the above description. The definition of the floating-point remainder function, fp_rem, is

straightforward in PVS.

REM(finl, (fin2:finJno'c zero?(fin))): fp_num =

let x = value(finl),

y = value(fin2) in

if (x - y * round_to_even(x/y)) = 0

then fini'ce(sign(finl),E_min,d_zero)

else real_to_fp(x - y • round_'co_even(x/y))
endif

fp_rem(fpl, fp2): fp_num =

IF finite?(fpl) R finite?(fp2)

THEN IF zero?(fp2)

THEN invalid

ELSIF zero?(REM(fpl, fp2)) THEN finite(sign(fpl),E_min,d_zero)

ELSE REM(fpl, fp2)

14



ENDIF
ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan_rem( fpl,

ELSIF infiniteF(fpl) THEN invalid

ELSE fpl

ENDIF

fp2)

According to the standard, the remainder function is always exact (i.e. no rounding error). This

fact has not yet been proven in PVS.

4.3 Square Root

PVS does not have a built-in definition for the square root function. It can be defined by the

expression:

sqrt(px): {py i py * py = px}

This definitiongenerates a TCC to prove that the range is nonempty _r all positive reais px. It

carriesin its type signature the relevant in_rmation about the square root function.

The specificationof the floating-pointsquare root operation is:

fp_sqrt(fp, mode) : fp_num =

IF NaN?(fp) THEN NaN_sqrt(fp)

ELSIF zero?(fp) THEN fp

ELSIF finite?(fp)

THEN IF sign(fp) = pos

THEN real_to_fp(fp_round(sqrt(value(fp)), model)

ELSE invalid

ENDIF

ELSIF i_sign(fp) = pos THEN fp

ELSE invalid

ENDIF

4.4 Conversion between precisions

The standard does not require any combination of precisions. However, if more than one precision

is supported, the standard requires conversions between all supported precisions. A specifica-

tion involving multiple precisions can easily be defined by importing multiple instances of theory

IEEE_854. The basic operations for defining conversions between precisions are included in the

PVS specification.

4.5 Floating-point _ decimal string

The PVS specification does not yet define conversions between floating-point numbers and deci-

mal strings. The standard places no restrictions on the decimal string format, so this cannot be

addressed fully until an implementation is defined.

4.6 Comparisons

The standard defines the comparison operations as follows:
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Four mutually exclusive relations are possible: "less than," "equal," "greater than," and

"unordered." The last case arises only when at least one operand is a NaN....

The result of a comparison shall be delivered in one of two ways at the implementor's

option: either as a condition code identifying one of the four relations listed above, or as

a true/false response to a predicate that names the specific predicate desired. [3, Section

5.7, page 12]

The first option is simple to define in PVS. We simply extend the valuation function to provide

a value for the infinities, and then define the comparison function using the corresponding real

relations.

comparison_code: type = {gt, it, eq, un}

fp_compare((fpl, fp2: fp_num)): comparison_code =

IF NaN?(fpl) OR NaN?(fp2) THEN un

ELSIF n_value(fpl) > n_value(fp2) THEN g%

ELSIF n_value(fpl) < n_value(fp2) THEN it

ELSE eq

ENDIF

For each element of an enumerated type, PVS automatically generates a predicate recognizer. Thus,

we can also use the above definition to support our formal specification of the second alternative

for realizing floating-point comparisons. The following are the predicate forms that the standard

requires.

shall include

eq?(fpl,fp2)

ne?(fpl,fp2)

gt?(fpl,fp2)

ge?(fpl,fp2)

I%?(fpl,fp2)

le?(fpl,fp2)

:bool = eq?(fp_compare(fpl,fp2))

:bool - not eq?(fp_compare(fpl,fp2))

:bool = gt?(fp_compare(fpl,fp2))

:bool = gt?(fp_compare(fpl,fp2)) or eq?(fp_compare(fpl,fp2))

:bool = i%?(fp_compare(fpl,fp2))

:bool = l_?(fp_compare(fpl,fp2)) or eq?(fp_compare(fpl,fp2))

_. should include

un? (fpl ,fp2) :bool - un? (fp_compare(fpl ,fp2))

All that remains is to correctly merge exception handling with the above definitions.

5 Exceptions

Section 7 of the standard states:

There are five types of exceptions that shall be signalled when detected. The signal entails

setting a status flag, taking a trap, or possibly doing both. With each exception should

be associated a trap under user control, as specified in Section 8 .... In some cases the

result is different if a trap is enabled.

For each type of exception, the implementation shall provide a status flag that shall be

set on any occurrance of the corresponding exception when no corresponding trap occurs.
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The only exceptions that can coincide are inexact with overflow and inexact with un-

derflow. [3, page 13]

The combination of exceptions and traps suggests that we need to modify the style of the PVS

specification from a purely functional specification to a process based specification. The standard

requires that we signal exceptions only if the trap for that exception is taken. However, in the

current functional style we cannot model transfer of control to a trap handler.

This can be overcome by having each of the previously defined functions return a pair of values,

the second element of the pair is either an indication of the exception to be signaled, or an identifier

to determine which trap handler to invoke.

The potential values for this identifier are determined by the following datatype declaration:

exception: DATATYPE

BEGIN

invalid_operation

division_by_zero

overflow

underflow(exact: bool)

inexact

no_exceptions

END exception

: invalid?

: div_by_zero?

: overflow?

: underflow?

: inexact?

: no_exceptions?

trap_enabled?(e:exception):bool _, = ?

To incorporate this strategy, the types of the previously defined functions need to be modified

slightly. We will illustrate the changes by working through a single example, fp_add. Each operation

shall now return a pair. The first element will be an fp_num and the second will be the exception

status.

fp_add_x(fpl, fp2, mode): [fp_num, exception] =

IF finite?(fpl) & finite?(fp2) THEN fp_op_x(add, fpl, fp2, mode)

ELSIF NaN?(fpl) OR NaN?(fp2) THEN fp_nan_x(add, fpl, fp2)

ELSE fp_add_inf_x(fpl, fp2)

ENDIF

The modifications required for infinity arithmetic are trivial. Section 6.1 of the standard states:

Arithmetic on oc is always exact and therefore shall signal no exceptions, except for the

invalid operations specified for oc in Section 7.1. [3, page 13]

The definition for fp_add_inf_x is:

fp_add_inf_x(numl,

(num2: hum ] infinite?(numl)

OR infinite?(num)))

: [fp_num, exception]

IF infinite?(numl) & infinite?(num2) THEN

IF (i_sign(numl) = i_sign(num2)) THEN

(numl, no_exceptions)
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ELSE(invalid, invalid_operation)

ENDIF

ELSIF infinite?(numl) THEN

(numl, no_exceptions)

ELSE (hum2, no_exceptions)

ENDIF

The operations on NaNs require similar modifications. The difficult cases in handling exceptions

occur with the rounding operations involved in fp_op_x.

fp_op_x(op.,finl, (fin2:finl div?(op) => not zero?(fin)) ,mode) :

[fp_num, excepZ ion]

LET rp = fp_round_x(apply(op, fin1, fin2), mode)

IN IF proj_l(rp) = 0 THEN (signed_zero(op, finl, fin2, mode),proj_2(rp))

ELSE real_to_fp_x(rp)

ENDIF

real_to_fp_x(r,e) : [fp_num, exception] = (real_Zo_fp(r),e)

Function fp_round_x isdefined by:

fp_round_x(r, mode) : [real,exception] =

IF r = 0 THEN (O,no_excep_ions)

ELSIF over_under?(r) then

round_except ions_x (r,mode)

ELSE (round_scaled(r,mode), is_exact? (r,mode) )

ENDIF

is_exact? (r :nzreal ,mode) :exception =

IF round_scaled(r,mode) = r then no_exceptions ELSE inexact ENDIF

All that remains is to define round_exceptions_x. This is a rather complicated definition that

breaks down into two cases. The first case is a potential overflow; the second is a potential underflow.

x: var (over_under?)

round_exceptions_x(x,mode):

IF abs(r)>max_pos THEN

overflow(x,mode)

ELSE underflo.(x,mode)

ENDIF

[fp_num, exception] =

Full descriptions of functions overflow and underflow will appear in the corresponding section
below.

5.1 Invalid Operation

The invalid operation exception does not require that a special value be delivered to a trap handler.

The cases where the invalid operation exception is raised for arithmetic operations have been
handled above.
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5.2 Division by Zero

Thestandarddoesnot requireanyspeciMtreatmentwhenthe trap is enabled,but it requiresthat
anappropriatelysignedinfinity bedeliveredwhentheexceptionis rMsed.The modifiedfp_div is:

fp_div_x(fpl, fp2, mode): [fp_num,exception] =

IF finite?(fpl) & finite?(fp2)

THEN IF zero?(fp2)

THEN IF zero?(fpl)

THEN (invalid, invalid_operation)

ELSE (infinite(mult_sign(fpl, fp2)), division_by_zero)

ENDIF

ELSE fp_op_x(div, fpl, fp2, mode)

ENDIF

ELSIF NaNF(fpl) OK NaN?(fp2) THEN fp_nan_x(div, fpl, fp2)

ELSE fp_div_inf_x(fpl, fp2)

ENDIF

5.3 Overflow

The result of an overflow is determined by both the rounding mode and overflow trap status.

The overflow exception shall be signaled whenever the destination precision's largest

finite number is exceeded in magnitude by what would have been the rounded floating-

point result were the exponent range unbounded.

Trapped overflows on all operations except conversions shall deliver to the trap handler

the result obtained by dividing the infinitely precise result by b_ and then rounding. [3,

page 14, section 7.3]

The standard continues by relating the possible values of a to the exponent range. The given

relation relies on the assumption that the exponent range is balanced around zero.

The overflow threshold is different for each of the rounding modes. The rounding mode also

determines the result when an overflow occurs. The PVS definition is

trap_over((rl:nzreal), (r2: real), (mode: rounding_mode)): real =

IF trap_enabled?(overflow) THEN round_scaled(rl * b " (-alpha), mode)

ELSE r2

ENDIF

overflow((r: nzreal I abs(r) > max_pos), (mode: rounding_mode)):

[real, exception] =

CASES mode OF

to_nearest:

IF abs(r)

>= b " (E_max + I)

- (i / 2) * b " (E_max + I - p)

THEN (trap_over(r, (sgn(r) * infinity), mode),overflow)

ELSE (sgn(r) * max_poe, inexact)
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ENDIF,

to_zero:

IF abs(r) >= b " (E_max + 1)

THEN (trap_over(r, (sgn(r) * max_poe), mode),overflow)

ELSE (sgn(r) * max_pos, inexact)

ENDIF,

¢o_pos:

IF r > max_pos THEN (trap_over(r, infinity, mode),overflow)

ELSIF r <= -b " (E_max ÷ 1)

THEN (trap_over(r, max_neg, mode),overflow)

ELSE (max_neg, inexact)

ENDIF,

to_neg:

IF r < max_neg THEN (trap_over(r, -infinity, mode),overflow)

ELSIF r >= b ^ (E_max + I)

THEN (trap_over(r, max_pos, mode),overflow)

ELSE (max_pos, inexact)

ENDIF

ENDCASES

5.4 Underflow

For results less than bE'-"*, we may not be able to preserve p significant digits. The PVS specification

includes a special rounding function for these cases of potential underflow.

round_under((r: nzreal I abs(r) < b A E_min), (mode: rounding_mode)): real

= b'(E_min - (p - l))*round(b'(-(E_min - (p - 1)))*r,mode)

The following correctness results have been proven in PVS about round_under:

round_under_error: LEMMA

abs(r) < b ^ E_min

=> abs(r - round_under(r, mode)) < b " (E_min - (p - 1))

round_under_near: LEMMA

abs(r) < b " E_min

=> abs(r - round_under(r, to_nearest))

<= b ^ (E_min - (p - I)) / 2

In addition, round_under rounds in the correct direction for the directed rounding modes. This
function is the core of the definition of function underflow.

In the absence of traps, underflow is signaled when a result is both tiny and inaccurate. Each

of these conditions may be defined in two distinct ways. Tininess occurs when a result is less than

bE"_,; it may be detected either before or after rounding. The PVS specification uses the following

predicate to signal tininess:

tiny?((r: nzreal ] abs(r) < b ^ E_min), (mode: rounding_mode)): bool =

IF tiny_fla E THEN abs(round_scaled(r, mode)) < b " E_min ELSE TRUE ENDIF
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Boolean constant tiny_flag is used to signify which method a particular implementation is using to

signal tininess; if tiny_flag = true, then tininess is detected after rounding, if tiny_flag = false

we have already satisfied the before rounding test for tininess (via the constraints on argument r).

Similarly, loss of accuracy may also be detected in one of two ways, either a loss due to denor-

malization or an inexact result. The PVS predicate detecting loss of accuracy is given by:

inaccurate?((r: nzreal I abs(r) < b - E_min), (mode: rounding_mode)): bool =

IF inaccurate_flag THEN (round_scaled(r,mode)/=round_under(r,mode))

ELSE (r/=round_under(r,mode))

ENDIF

If the underflow trap is enabled, it is taken whenever tininess is detected. On a trapped underflow,

the result must be scaled by a. Otherwise the both tininess and loss of accuracy must occur for

underflow to be signaled. These cases are captured in the PVS definition of underflow:

underflow((r: nzreal I abs(r) < b ^ E_min), (mode: rounding_mode)):

[real, exception] =

IF tiny?(r, mode)

THEN IF trap_enabled?(underflow(FALSE))

THEN (round_scaled(r * b - alpha, mode),

underflow(exact_underflow(r, mode)))

ELSIF inaccurate?(r, mode) THEN (round_under(r, mode), underflow(TRUE))

ELSE (round_under(r, mode),

IF r = round_under(r, mode) THEN no_exceptions

ELSE inexact

ENDIF)

ENDIF

ELSE (round_under(r, mode), inexact)

ENDIF

This completes the definition of rounding in the presence of exceptions.

5.5 Inexact

The delivered result of a function does not change when the inexact exception is signalled. The

signal is raised whenever the value of the delivered result is different from the infinitely precise

intermediate result (i.e. inexact is signalled when rounding occurs). This can be computed with

respect to function round by using function is_exact?.

Inexact may also be signaled in conjunction with overflow or underflow. These cases were

addressed above.

6 Traps

The PVS specification does not address traps other than the declaration of the predicate trap_enabled?

which is used to test whether a particular trap is enabled.
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7 Concluding Remarks

This document described a partial definition of the IEEE-854 Standard for Radix-Independent

Floating-Point Arithmetic in the PVS verification system. In most instances, there was a straight-

forward definition of the IEEE-854 features using the PVS specification language. Formal tech-

niques are sufficiently mature that it is reasonable to consider use of formal specification techniques
in the development of future standards.

The constraints enumerated in IEEE-854 for floating-point arithmetic are a generalization the

IEEE-754 Standard for Binary Floating-Point Arithmetic. Therefore, this formalization of the

IEEE-854 standard can beinstantiated to serve as a basis for the formal specification of IEEE-754

arithmetic. All that is required is to instantiate the general theory with the appropriate constants,
and define the representation formats in accordance with IEEE-754.

The PVS theories described in this document provide a core formal basis for verifying any

proposed instance of IEEE floating-point arithmetic. We plan to explore the verification of floating-

point systems with respect to the formal description presented here.
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